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INTRODUCTION

Electrolytic chromium has many industrial and ordnance applications (ref 1) because of
jts ease of production, high hardness, high melting point, low coefficient of friction, resistance to
aggressive chemical environment, and resistance to wear and erosion. High contraction (HC)
chromium—also known as “bright chromium”—shrinks after heating and subsequent cooling. It
is often used to reduce galling, friction, wear, and erosion and is the material of choice for
production refractory coatings, which protect the cylinder bore of gun tubes against high
temperature and high pressure-induced deterioration. However, HC chromium is low in tensile
strength and contains characteristic cracks. These cracks allow combustion gases to penetrate and
corrode the chromium coating and steel substrate—thereby reducing lifetime and causing failure.

The softer and almost crack-free low contraction (LC) chromium exhibits less contraction
after heating (refs 2, 3), because it contains less impurities than HC chromium. LC chromium has
been considered as a promising alternative to HC chromium for protecting cylinder bores against
wear and erosion, and several investigators continue research and development in HC and LC
electrolytic chromium deposition. For example, anisotropy and residual stress in HC chromium
specimens were deduced using a Matlab matrix inversion method (refs 4, 5). Chen et al. studied
improved LC chromium electrodeposition (refs 6, 7) and laminated HC-LC chromium
electrodeposition (ref 8), while Pan et al. studied the optimization of the LC plating parameters
(ref 9). Acoustic emission during chromjum plating (ref 10) and the effects of pulse plating LC
chromium (ref 11) have also been investigated. All of this research provides the crystallographic
texture basis for the germination and growth of electrodeposited HC and LC chromium using an
enhanced, high-resolution, three-dimensional pole figure technique. Hardness, topography, and
microstructure analyses were also performed.

EXPERIMENTAL PROCEDURE

Immersion and Flow-Through Chromium Plating Facilities

The manufacturing processes for production chromium plating have been summarized by
Collins (ref 12). Both production and laboratory chromium plating systems use an immersion
plating technique, although flow-through chromium plating facilities for chromium deposition
are being constructed. The immersion plating solution was prepared by dissolving 256 gram/liter
of chromic acid (CrOs) and 2.56 gram/liter of sulfuric acid (H,SO,) into distilled water. HC
chromium was plated at low temperature and low current density; LC chromium was plated at
high temperature and high current density. Table 1 gives the experimental conditions for the five
specimens under investigation—a production HC chromium specimen deposited on steel; a
production LC chromium specimen deposited on steel; and three laboratory LC specimens
deposited on copper with and without pulse current plating and cathode anode rotation. All of the
LC chromium specimens were deposited using the same temperature and current density. In the
pulse plating and cathode-anode rotation analysis, the specimen acted as the cathode, and the
wire mesh platinum titanium acted as the anode. Pulse plating used 1.0 ms on-time and 1.0 ms
off-time. The thickness measurements in Table 1 were made with a Leitz metallographic
microscope.




Table 1. HC-LC Specimen Plating Conditibns and Measured Thickness

Production
Specimens Condition Substrate Thickness
HC CR (s213) Production Martensite 122 u
immersion system, Steel (4.8 mil)
55°C
LC CR (lccrel) Production Martensite 130 p
immersion system, Steel (5.1 mil)
85°C
LCA Laboratory Cu plate 56 1
immersion system, (2.2 mil)

85°C, 10 amps,
rotated at 100 rpm

LCB Laboratory Cu plate 25
immersion system, (1.0 mil)
85°C, 10 amps,
pulse plating
LCC Laboratory Cu plate 63
immersion system, (2.5 mil)

85°C, no rotation,
no pulse plating

Experimental Technique and Enhanced High-Resolution Pole Figure Analysis

An x-ray diffraction study was performed on a Scintag 2000 four-axis diffractometer
using Cu radiation. Conventional Bragg two theta measurements provided qualitative
information about the preferred orientation in polycrystalline materials. Texture measurement
using the pole figure technique for each orientation mapped a stereographic projection of the
crystalline plane normal and provided a statistical distribution measurement of grain orientations.
The conventional x-ray pole figure technique using the (6-26) geometry limited “chi” and “phi”
analysis to 5° steps for convenient orientation distribution function (ODF) evaluation and did not
allow an analysis of the finer steps. When the texture was tight—such as in studies of epitaxial
semi-conductor thin films—Ilarge steps caused distorted or even missed peaks. The enhanced,
high-resolution, three-dimensional pole figure technique that had no limit on step size and a Z-
axis representing intensity was developed to facilitate studies of grain orientations (ref 13). A
pole figure generated with a chi range of 0° to 80° and a phi range from 0° to 360° contained 2K
information when using 5° steps—compared to 58K information when using 1° steps.

Texture Analysis in HC and LC Electrolytic Chromium Deposition

Figure 1 compares the diffraction patterns of HC CR and LC CR specimens and 140
mesh chromium powder using Cu Ko radiation. The top figure gives the result for LC chromium
on steel with superimposed International Center for Data Diffraction (ICDD) database for
chromium. It also shows the near random crystalline orientation of LC chromium on steel. The




middle figure shows the results for HC chromium on steel, which has a 98% preferred (222)
orientation. For comparison purposes, the bottom figure gives the diffraction pattern for a 140

mesh chromium powder specimen.
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Figure 1. X-ray diffraction patterns of HC and LC chromium deposits
on steel substrate compared to 140 mesh chromium powder




In Figure 2, texture in production HC chromium is compared to production LC chromium
using the (200), (211), and (220) pole figures. In the upper figures for HC chromium on steel, the
following was observed—(200) pole ring structure at chi = 54.7% (211) pole ring structure at chi
= 19.5° and chi = 61.9° and (220) pole ring structure at chi = 35.3°. Chromium is a bcc crystal,
and, from the intensity and location of the ring structures, we concluded that HC chromium
contains highly oriented <111> fiber texture. All crystalline planes were preferentially oriented—
with the {111} planes parallel to the specimen surface with perfect azimuth symmetry around the
fiber axis. In the lower figures for LC chromium, pole figures for (200), (211), and (220)
reflections showed near random crystallite distribution. In Figure 3, enhanced (21 1), (110), and
(111) pole figures are shown for highly textured HC chromium.
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Figure 2. Grain orientation in HC and LC chromium deposits
on steel substrate using Cu Ko radiation




(211) POLE FIGURE (110) POLE FIGURE (111) POLE FIGURE

HC HC HC

/]
: \\\\\\w’lllf

I

IR
i

)

\
AR

Figure 3. High-resolution analysis and three-dimensional display
of pole figures for textured chromium

Laboratory Cathode-Anode Rotation and Pulse Current Plating Experiments

Figure 4 gives the diffraction scans for three laboratory LC chromium specimens—plated
on copper substrate at 85°C and using the same high current density as in production LC
chromium—using copper radiation. From top to bottom, the three figures represent specimens
with cathode-anode rotation, with pulse plating, and with no rotation and no pulse plating. The
relative percentage intensity for each reflection was computed from an iterative profile fitting of
the area under the diffraction peak according to a Pearson VII diffraction peak profile and using
raw peak height. Preferred (211) and (222) orientations were observed in all three specimens—
with only small crystallographic differences noted. The preferred (211) orientation and the (222)
orientation for specimens plated at 85° was no surprise because it had also been observed in
laboratory LC chromium specimens on copper substrate at various current densities (ref 9). Its
appearance in specimens LC A, LC B, and LC C—but not in specimen LC CR, which was plated
under the same temperature and current density—can be attributed to the difference in substrates
and to the controlled production process.

Hardness, Microstructure, and Other Physical Properties

Because the observed textures in production HC and LC chromium are drastically
different, their physical properties are radically different as well. Hardness in electrolytic
chromium can be caused by crystalline texture, hydrogen and oxygen content, internal stress, or
grain size (ref 6). Because crystalline anisotropy determines the elastic-plastic properties in
textured materials (such as Young’s modulus, Poisson’s ratio, and yielding), hardness in' HC and
LC chromium is expected to be very different. Table 2 provides hardness measurements, which
were taken using a Knoop diamond indenter at a 50g load. Each data point is an average of five
measurements. HC chromium plated at low temperature and low current density has a hardness
of approximately 1000 Knoop, while LC specimens plated at high temperature and high current
density have a hardness of approximately 600 Knoop—independent of the substrate.
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Figure 4. X-ray diffraction patterns for LC chromium plated onto Cu substrate
using cathode-anode rotation and pulse current plating LC A,LCB, and LC C




A scanning electron microscope and a Leitz MMS5 metallography camera were used to
examine the topography and cross-sectional microstructure of the deposits. In Figure 5, the
topography and microstructure of production HC chromium is compared to production LC
chromium. The top left figure shows an HC chromium microstructure with extensive vertical
cracks, and the top right figure shows an LC chromium microstructure with much reduced crack
density because LC chromium is considered to be almost crack-free. The bottom left figure
shows HC chromium topography, which has extensive surface cracks, and the bottom right figure
shows LC chromium surface topography. The extensive cracks in the HC chromium can be
attributed to high tensile residual stress during deposition. :

Table 2 lists other HC and LC chromium physical properties that can be affected by the
differences in crystalline texture. These properties include fracture strength, density, thermal
behavior upon heating, and wear and erosion performance. Figure 6 gives the thermal expansion
coefficient of production HC and LC chromium and shows the HC and LC nature of the coatings
(ref 8). Figure 7 compares the wear and erosion performance of the LC coatings to the HC
coatings (ref 6). In the plot, LC chromium on steel shows better wearing characteristics than HC
chromium on steel.

Table 2. Characteristics of Eléctrolytic HC and LC Chromium Depositions

Properties Production | Production | Laboratory | Laboratory | Laboratory
HC LC LCA LCB LCC

Physical Shiny Dull Dull Dull - Dull
Appearance
Preferred (111) Near 211 (211) (211)
Orientation fiber random (111) (111) (111)
Knoop 1005+/-52.9 | 600.24/-20.3 | 527.14/-22.8 | 692.9+/-27.9 | 590.8+/-22.9
Hardness
Cracks Yes No No No No
Ductility Brittle More ductile
Fracture 105 MPa 343 MPa
Strength '
Deposition 25.4 p/hr 76.1 p/hr
Rate (1 mil/hr) (3 mil/hr)
Thermal Shrank after | Negligible
Contraction heating contraction
Density 7.01 7.16
(gram/cm3)




HCCR LC CR
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Figure 5. HC and LC chromium electron microscope topography and microstructure
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Figure 6. Thermal expansion coefficient in HC-LC chromium deposition
from reference 8 (Curve A - HC chromium, Curve B - LC chromium)
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CONCLUSIONS

Because crystalline grain orientation plays an important role in controlling the physical
properties of materials, engineered crystalline texture has often been used to optimize material
behavior for specific applications. Changing the deposition parameters in electrolytic chromium
deposition—such as temperature and current density—drastically changes the crystalline texture.
For wear and erosion applications, randomly-oriented LC chromium is superior to highly
textured HC chromium. Other conclusions are as follows.

1. Production HC chromium plated on steel at a lower temperature and lower current density
exhibited predominately <111> fiber texture.

2. LC chromjum plated on steel at a higher temperature and higher current density exhibited
an almost random texture.

3. Laboratory LC chromium coatings plated on copper with or without sample rotation and
pulsed current plating exhibited (111) and (211) preferred orientations.

4. Plating bath temperature and current density are the most critical factors affecting grain
orientations. Relative rotation of the specimen and pulse current plating conditions play a
less important role.

5. The drastic transition from strong fiber-textured HC chromium to random-oriented LC
chromium is accompanied by marked improvement in crack density, microstructure,
hardness, deposition, thermal behavior upon heating and cooling, and wear and erosion
performance.
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